The relativistic self-energy in nuclear dynamics

Oliver Plohl

Institut für Theoretische Physik

Eberhard Karls Universität Tübingen

Todtmoos

2007
Outline

Motivation & introduction

Self-energy in nuclear matter
 NN interaction models
 Restoration of symmetry of Lorentz group
 Results for NN potentials
 Self-energy from chiral EFT

Chiral condensate in nuclear matter
 In-Medium QCD sum rules
 Chiral condensate and effective nucleon mass

Summary & conclusions
Relativity in nuclear systems?

Relevance of relativity:

\[\frac{k_F}{M} \simeq 1/4 \rightarrow \text{velocity } v \simeq 1/4c \]

→ moderate corrections from relativistic kinematics

But:

- Relativistic dynamics
 RMF, Hadronic many-body theory (DBHF), QCD sum rules

 \[\rightarrow \Sigma_s \simeq -350 \text{ MeV}, \Sigma_0 \simeq +300 \text{ MeV} \]

- Cancellation in mean field potential \(U_{s.p.} \simeq \Sigma_0 + \Sigma_s \simeq -50 \text{ MeV} \)

- Large spin-orbit force \(U_{S.O.} \propto (\Sigma_0 - \Sigma_s) \vec{L} \cdot \vec{S} \simeq +750 \text{ MeV} \)

- Effective nucleon mass in nuclear matter \(M^* = M + \Sigma_s \)
Relativity in nuclear systems?

Relevance of relativity:

\[\frac{k_F}{M} \simeq 1/4 \rightarrow \text{velocity } v \simeq 1/4c \]

\[\rightarrow \text{moderate corrections from relativistic kinematics} \]

But:

- Relativistic dynamics
 - RMF, Hadronic many-body theory (DBHF), QCD sum rules
 \[\rightarrow \Sigma_s \simeq -350 \text{ MeV}, \Sigma_0 \simeq +300 \text{ MeV} \]

- Cancellation in mean field potential \(U_{s.p.} \simeq \Sigma_0 + \Sigma_s \simeq -50 \text{ MeV} \)

- Large spin-orbit force \(U_{s.o.} \propto (\Sigma_0 - \Sigma_s) \vec{L} \cdot \vec{S} \simeq +750 \text{ MeV} \)

- Effective nucleon mass in nuclear matter \(M^* = M + \Sigma_s \)
Motivation & introduction

Self-energy in nuclear matter
- NN interaction models
- Restoration of symmetry of Lorentz group
- Results for NN potentials
- Self-energy from chiral EFT

Chiral condensate in nuclear matter
- In-Medium QCD sum rules
- Chiral condensate and effective nucleon mass

Summary & conclusions
Relativistic NN potentials

▶ Bonn A
field theoretical relativistic one-boson-exchange potential,
various scales and spin-isospin structure is associated with meson exchange,
long range part due to OPE, short/intermediate range = heavy mesons

▶ CD Bonn
charge independence breaking due to pion mass splitting,
readjustment of certain parameters in each partial wave (phenomenological
high-precision NN potential with 43 free parameters)
Non-relativistic NN potentials

- **Nijm 93 and Nijmegen I/II**
 long range part due to OPE, approximate OBE amplitudes

- **Argonne v_{18}**
 long range part due to OPE, intermediate and short range parametrized via operators \(O_\alpha \) and strength functions \(V_\alpha \)

- **Idaho potential**
 Chiral effective field theory, N^3LO, D. Entem and R. Machleidt, (29 free model parameters)

- **V_{lowk}**
 Derivation of an effective low-momentum potential \(V_{lowk} \) from modern NN potentials (out-integration of high-momentum modes, \(\Lambda \approx 2fm^{-1} \), and use of renormalization group methods)
Nucleon self-energy in Hartree-Fock approximation

\[\Sigma = -i \int_F \left(\text{Tr}[GV] - GV \right) \]

- \(|LSJ\rangle \rightarrow \text{partial wave helicity basis} \rightarrow \text{plane wave helicity basis} \rightarrow \text{covariant operator basis}\)

- \(\text{translational and rotational invariance, parity conservation, time reversal invariance}\)

\[\Sigma(k, k_F) = \Sigma_s(k, k_F) - \gamma_0 \Sigma_0(k, k_F) + \gamma \cdot k \Sigma_v(k, k_F) \]
Large scalar/vector fields

→ Mapping of NN potentials on covariant operator basis
→ large scalar/vector fields → universal feature of NN interaction

O.P., Fuchs, van Dalen, PRC 73 (2006) 014003
Role of contact terms

LO

\[V = -\frac{g^{2}}{4\pi^{2}} \frac{\bar{\sigma}_{1} \cdot \vec{k} \bar{\sigma}_{2} \cdot \vec{k}}{q^{2} + m^{2}_{\pi}}, \quad V = C_{S} + C_{T} \bar{\sigma}_{1} \cdot \bar{\sigma}_{2} \]

NLO

leading order 2\pi exchange

\[V = \ldots + C_{5}(-i \vec{S} \cdot (\vec{q} \times \vec{q}')) + \ldots + C_{7}(\ldots) \]

SO force (NLO contact terms) → large scalar/vector fields
→ Nucleon mass \(M^* = M + \Sigma_{S} \) → short-distance physics

O.P., C. Fuchs, PRC 74 (2006) 034325
Role of contact terms

LO

\[
V = -\frac{g^2}{4f^2} \frac{\bar{\sigma}_1 \cdot \vec{k} \bar{\sigma}_2 \cdot \vec{k}}{q^2 + m_f^2}, \quad V = C_S + C_T \bar{\sigma}_1 \cdot \bar{\sigma}_2
\]

NLO

leading order \(2\pi\) exchange

\[
V = \ldots + C_5 (-i \bar{\sigma} \cdot (\vec{q} \times \vec{q}')) + \ldots + C_7 (\ldots)
\]

SO force (NLO contact terms) → large scalar/vector fields

→ Nucleon mass \(M^* = M + \Sigma_S\) → short-distance physics

O.P., C. Fuchs, PRC 74 (2006) 034325
Relativity in nuclear systems?

What’s known
Finite nuclei (RMF)
large scalar/vector fields \Rightarrow SO force

What’s new
NN-scattering
large scalar/vector fields \Leftarrow SO force
Relativity in nuclear systems?

What’s known
Finite nuclei (RMF)
large scalar/vector fields \Rightarrow SO force

What’s new
NN-scattering
large scalar/vector fields \Leftarrow SO force
Motivation & introduction

Self-energy in nuclear matter
- NN interaction models
- Restoration of symmetry of Lorentz group
- Results for NN potentials
- Self-energy from chiral EFT

Chiral condensate in nuclear matter
- In-Medium QCD sum rules
- Chiral condensate and effective nucleon mass

Summary & conclusions
Connection to QCD sum rules

\[\Sigma_s = -\frac{8\pi^2}{\Lambda_B^2} [\langle \bar{q}q \rangle_\rho - \langle \bar{q}q \rangle_0] \]
\[= -\frac{8\pi^2}{\Lambda_B^2} \frac{\sigma_N m_u + m_d}{\sigma_N M} \rho S \]
\[= -\frac{\rho S}{m_\pi^2 f_\pi^2} \rho S \]
\[-\Sigma_0 = -\frac{64\pi^2}{3\Lambda_B^2} \langle \bar{q} \gamma_0 q \rangle_\rho \]
\[= -\frac{32\pi^2}{\Lambda_B^2} \rho \]

Joffe formulae

QCD sum rules and chiral EFT fields well comparable at moderate densities (both obtained to leading order in density)

O.P., C. Fuchs, PRC 74 (2006) 034325
Connection to QCD sum rules

\[\Sigma_s = -\frac{8\pi^2}{\Lambda_B^2} \left[\langle \bar{q}q \rangle_\rho - \langle \bar{q}q \rangle_0 \right] \]
\[= -\frac{8\pi^2}{\Lambda_B^2} \frac{\sigma_N}{m_u + m_d} \rho S \]
\[= -\frac{8\pi^2}{\Lambda_B^2} \frac{\sigma_N M}{m_\pi^2 f_\pi^2} \rho S \]
\[-\Sigma_0 = -\frac{64\pi^2}{3\Lambda_B^2} \langle \bar{q} \gamma_0 q \rangle_\rho \]
\[= -\frac{32\pi^2}{\Lambda_B^2} \rho \]

Joffe formulae

QCD sum rules and chiral EFT fields well comparable at moderate densities (both obtained to leading order in density)

O.P., C. Fuchs, PRC 74 (2006) 034325
Nucleon mass in matter

\[M^* = M + \Sigma_s \]

QCD sum rules

\[\frac{M^*}{M} = 1 - \frac{\sigma_N}{m^2 f^2} \rho_B \]

Model independent prediction

\[\frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} = 1 - \frac{\sigma_N}{m^2 f^2} \rho_B \]

→ consistent comparison of effective nucleon mass and chiral condensate in matter

\[\frac{M^*}{M} \equiv \frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} \]
Chiral condensate in nuclear matter

Order parameter of spontaneous chiral symmetry breaking
\[\bar{q}q \equiv \frac{1}{2}(\bar{u}u + \bar{d}d), \quad m \equiv \frac{1}{2}(m_u + m_d) \]

\[\langle \bar{q}q \rangle_0 = -(225 \pm 25 \text{ MeV})^3 \]

From Hellmann-Feynman theorem

\[2m (\langle \bar{q}q \rangle_{\rho_B} - \langle \bar{q}q \rangle_0) = m \frac{d\mathcal{E}}{dm} \]

Energy density
\[\mathcal{E} = M\rho_B + \frac{E}{A}\rho_B \]

Equation-of-state
\[\frac{E}{A} = \frac{1}{\rho} \int_F \frac{d^3k}{2\pi^3} \left[\frac{k^2}{2M} + \frac{1}{2} U_{\text{s.p.}}(k, k_F) \right] \]
Chiral condensate in nuclear matter

\[
\frac{\langle \bar{q}q \rangle_{\rho_B}}{\langle \bar{q}q \rangle_0} = 1 - \frac{\rho_B}{m_\pi^2 f_\pi^2} \left[\sigma_N + m \frac{d}{dm} \frac{E}{A} \right]
\]

Gell-Mann-Oakes-Renner \quad 2m\langle \bar{q}q \rangle_0 = -m_\pi^2 f_\pi^2,

pion-nucleon sigma-term \quad \sigma_N = m \frac{dM}{dm} = \langle N | m\bar{q}q | N \rangle

Comparison of \(\frac{M^*}{M}\) and \(\frac{\langle \bar{q}q \rangle_{\rho_B}}{\langle \bar{q}q \rangle_0}\) is done with
the same chiral EFT interaction and at the same order

Quark mass dependence of the nuclear forces,
Chiral condensate in nuclear matter at NLO

Leading order approximation
\[
\frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} = 1 - \frac{\sigma_N}{m_\pi^2 f_\pi^2} \rho
\]

NLO chiral EFT potential (Hartree-Fock)
\[
\frac{M^*}{M} = 1 + \frac{\Sigma_S}{M}
\]

\[
\rightarrow \frac{M^*}{M} \neq \frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0}
\]

\(M^*\) generated by NLO contact interactions

Change of chiral condensate mainly due to virtual low momentum pions
Motivation & introduction
Self-energy Σ
Chiral condensate
Summary

In-Medium QCD sum rules
Chiral condensate and effective nucleon mass

Chiral condensate in nuclear matter at NLO

Leading order approximation
\[
\frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} = 1 - \frac{\sigma_N}{m^2_\pi f^2_\pi} \rho
\]

NLO chiral EFT potential (Hartree-Fock)
\[
\frac{M^*}{M} = 1 + \frac{\Sigma_S}{M}
\]

\[\rightarrow \frac{M^*}{M} \neq \frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0}\]

M^* generated by NLO contact interactions
Change of chiral condensate mainly due to virtual low momentum pions

Oliver Plohl
The relativistic self-energy in nuclear dynamics
Chiral condensate in nuclear matter at NLO

Leading order approximation
\[\frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} = 1 - \frac{\sigma_N}{m^2_\pi f^2_\pi} \rho \]

NLO chiral EFT potential (Hartree-Fock)
\[\frac{M^*}{M} = 1 + \frac{\Sigma_S}{M} \]
\[\rightarrow \frac{M^*}{M} \neq \frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} \]

\(M^* \) generated by NLO contact interactions
Change of chiral condensate mainly due to virtual low momentum pions
Chiral condensate in nuclear matter

\[
\frac{\langle q\bar{q} \rangle_{\rho_N}}{\langle q\bar{q} \rangle_0} = \frac{\rho_N}{\rho_0}
\]

- short range NN correlations have minor influence on the density dependence of the chiral condensate
Summary & conclusions

- Relativistic self-energy
 → Vacuum structure of NN interaction enforces the generation of large scalar/vector fields ($\approx 300 - 350$ MeV)

- Self-energy from chiral EFT
 NLO contact terms (LEC C_5 connected to SO Force)
 → large scalar/vector fields

- Scalar condensate in matter (NLO)
 Effective nucleon mass does not depend only on the scalar condensate (20%), different physical origin
Summary & conclusions

- Relativistic self-energy
 → Vacuum structure of NN interaction enforces the generation of large scalar/vector fields ($\simeq 300 - 350$ MeV)

- Self-energy from chiral EFT
 NLO contact terms ($\text{LEC } C_5$ connected to SO Force)
 → large scalar/vector fields

- Chiral condensate in matter (NLO)
 Effective nucleon mass does not depend only on the scalar condensate (20%), different physical origin

Thank you!
One-boson exchange potentials

Bonn and CD-Bonn potentials

\[V(q', q) = \sum_{\alpha=s,ps,\nu} \tilde{V}_\alpha(q', q) \mathcal{F}_\alpha^2(q', q; \lambda_\alpha) \]

\[-i\tilde{V}_\alpha(q', q) = \frac{\bar{u}(-q') \kappa_2^{(\alpha)} u(-q) P_\alpha \bar{u}(q') \kappa_1^{(\alpha)} u(q)}{(q' - q)^2 - m_\alpha^2}, \quad u_\lambda(q) = \sqrt{\frac{E + M}{2M}} \left(\frac{1}{2\lambda |q| E + M} \right) \chi_\lambda \]

Dirac structure

\[\kappa^{(s)} = g_s 1, \quad \kappa^{(ps)} = g_{ps} \frac{q' - q}{2M} i\gamma_5, \quad \kappa^{(v)} = g_v \gamma^\mu + \frac{f_v}{2M} i\sigma^{\mu\nu} \]

→ long range = OPE, short/intermediate range = heavy mesons
Non-relativistic potentials

Low energy expansion of OBE potential

\[
V(q', q) = \sum_{\alpha=1,5} \left[V_\alpha + V'_\alpha \tau_1 \cdot \tau_2 \right] O_\alpha
\]

\[
O_1 = 1,
\]

\[
O_2 = \sigma_1 \cdot \sigma_2,
\]

\[
O_3 = (\sigma_1 \cdot k)(\sigma_2 \cdot k),
\]

\[
O_4 = \frac{i}{2}(\sigma_1 + \sigma_2) \cdot n,
\]

\[
O_5 = (\sigma_1 \cdot n)(\sigma_2 \cdot n),
\]

\[
k = q' - q,
\]

\[
P = \frac{1}{2}(q' + q),
\]

\[
n = q \times q' \equiv P \times k,
\]
Nucleon self-energy in Hartree-Fock approximation

\[\Sigma = -i \int_F \left(\text{Tr}[GV] - GV \right) \]

Fermi covariants

\[S = 1 \otimes 1, \quad V = \gamma^\mu \otimes \gamma_\mu, \quad T = \sigma^{\mu\nu} \otimes \sigma_{\mu\nu}, \quad P = \gamma_5 \otimes \gamma_5, \quad A = \gamma_5 \gamma^\mu \otimes \gamma_5 \gamma_\mu \]

Pseudovector choice

\[\Gamma_m = \{ S, \tilde{S}, (A - \tilde{A}), PV, \tilde{PV} \} \]

|LSJ⟩ → partial wave helicity basis → plane wave helicity basis → Covariant operator basis

\[\hat{V}^I(|q|, \theta) = g^I_S(|q|, \theta) S - g^I_{\tilde{S}}(|q|, \theta) \tilde{S} + g^I_A(|q|, \theta) (A - \tilde{A}) + g^I_{PV}(|q|, \theta) PV - g^I_{\tilde{PV}}(|q|, \theta) \tilde{PV} \]
Lorentz invariant amplitudes

- g_S
- g_A
- g_{PV}
- g_{\sim}

$q [\text{MeV}]$

$[\text{fm}^2]$
Chiral NN potential

\[\mathcal{L} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} \]

- **2N forces**
 - Q^0_{LO}
 - Q^2_{NLO}
 - $Q^3_{N^2LO}$
 - $Q^4_{N^3LO}$

- **3N forces**
 - \ldots

- **4N forces**
 - \ldots

\[(\frac{Q}{\Lambda})^\nu \]

Q is momentum (derivative) or pion mass m_π

Λ is chiral symmetry breaking scale
Motivation & introduction
Self-energy Σ
Chiral condensate
Summary

Remarks

Single particle potential $U_{s.p.}$

$$U_{s.p.}(k) = \frac{M}{E_k} \langle \bar{u}(k)|\Sigma|u(k) \rangle$$

$$= M\Sigma_s/E_k - \Sigma_0 + \Sigma_v k^2/E_k$$

Oliver Plohl The relativistic self-energy in nuclear dynamics
Chiral condensate in nuclear matter

\[\langle \psi(\lambda) | \frac{d}{d\lambda} H(\lambda) | \psi(\lambda) \rangle = \frac{d}{d\lambda} E(\lambda) \]

\[\langle \psi(\lambda) | \frac{d}{d\lambda} H(\lambda) | \psi(\lambda) \rangle = \frac{d}{d\lambda} \langle \psi(\lambda) | H(\lambda) | \psi(\lambda) \rangle \]

Explicit chiral symmetry breaking \(\mathcal{H}_{QCD} = \mathcal{H}_0 + \mathcal{H}_m, \mathcal{H}_m = m_u \bar{u}u + m_d \bar{d}d + \cdots \)

Introduce \(\bar{q}q \equiv \frac{1}{2}(\bar{u}u + \bar{d}d), \quad m_q \equiv \frac{1}{2}(m_u + m_d), \quad \delta m_q = m_d - m_u \)

\[\mathcal{H}_m = 2m_q \bar{q}q - \frac{1}{2} \delta m_q (\bar{u}u - \bar{d}d) + \cdots \]

Identify \(\lambda \rightarrow m_q \) and \(H \rightarrow \int d^3x \mathcal{H}_{QCD} \)

\[2m_q \langle \psi(m_q) | \int d^3x \bar{q}q | \psi(m_q) \rangle = m_q \frac{d}{dm_q} \langle \psi(m_q) | \int d^3x \mathcal{H}_{QCD} | \psi(m_q) \rangle. \]

\(|\psi(m_q)\rangle = |\rho_N\rangle \) (ground state of nuclear matter at \(\rho_N \))

\(|\psi(m_q)\rangle = |0\rangle \) (vacuum state)

Taking the difference of these two cases one obtains

\[2m_q (\langle \bar{q}q \rangle_{\rho_N} - \langle \bar{q}q \rangle_0) = m_q \frac{d}{dm_q} (\mathcal{E}(\rho_N) - \mathcal{E}(0)) . \]
Chiral condensate in nuclear matter

\[2m(\langle \bar{q}q \rangle_\rho - \langle \bar{q}q \rangle_0) = m \frac{d}{dm} \left(M + \frac{E}{A} \right) \rho \]

\[\frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} = 1 + \frac{m \rho}{2m \langle \bar{q}q \rangle_0} \frac{d}{dm} \left(M + \frac{E}{A} \right) \]

\[\frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} = 1 - \frac{\rho}{m^2 f^2_\pi} \left[\sigma_N + m \frac{d}{dm} \frac{E}{A} \right] \]

Gell-Mann-Oakes-Renner (GOR) relation \[2m\langle \bar{q}q \rangle_0 = -m^2 f^2_\pi \],

pion-nucleon sigma-term \[\sigma_N = m \frac{dM}{dm} = \langle N|m\bar{q}q|N \rangle \]
Chiral condensate in nuclear matter

DBHF with OBE Potential

\[
m \frac{dE}{dm} = \sum_{S, \nu, \pi, \rho} \left[\frac{\partial E}{\partial m} \frac{dm_i}{dm} + \frac{\partial E}{\partial g_i} \frac{dg_i}{dm_i} + \cdots \right] + \sigma_N \frac{\partial E}{\partial M}
\]

\[
\sigma_S \equiv m \frac{dm_S}{dm} = C_S \sigma_N
\]

\[0.5 < C_S < 1\]

Fig. 3. The ratio \(\langle \bar{q} q \rangle_\rho / \langle \bar{q} q \rangle_0\) of the chiral condensate at baryon density \(\rho\) with respect to its value at \(\rho = 0\). Dashed curve: leading order result with \(\sigma_N = \sigma_N\). The solid curves correspond to different scalar “sigma terms” as in Fig. 2.
Chiral condensate in nuclear matter

\[
\frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} = 1 - \frac{\rho}{m^2 f^2_\pi} \left[\sigma_N + m \frac{d}{dm} \frac{E}{A} \right]
\]

\[
\frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} = 1 - \frac{\rho}{m^2 f^2_\pi} \left[\sigma_N + m \frac{\partial (E/A)}{\partial M} \frac{dM}{dm} + m \frac{\partial (E/A)}{\partial m_\pi} \frac{dm_\pi}{dm} + \cdots \right]
\]

\[
\frac{\langle \bar{q}q \rangle_\rho}{\langle \bar{q}q \rangle_0} = 1 - \frac{\rho}{\rho^X} \left[1 + \frac{\partial (E/A)}{\partial M} \frac{dM}{dm} + \frac{\partial (E/A)}{\partial m_\pi} \frac{m_\pi}{2\sigma_N} \right]
\]

\[
2m\langle \bar{q}q \rangle_0 = -m^2 f^2_\pi \quad \sigma_N = m \frac{dM}{dm} \quad dm_\pi = m_\pi \frac{dm}{2m} \quad \rho^X \equiv \frac{m^2 f^2_\pi}{\sigma_N}
\]

Quark mass dependence of the nuclear forces,